无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2012美国US F=MA物理竞赛 (id: 6d45ab63a)

[复制链接]
admin 发表于 2025-12-20 23:13:50 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2012美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
Shown below is a $log/log$ plot for the data collected of amplitude and period of oscillation for certain non-linear oscillator.

According to the data, the relationship between period $T$ and amplitude $A$ is best given by

A. $T = 1000A^{2}$
B. $T = 100A^{3}$
C. $T = 2A + 3$
D. $T = 3\sqrt{A}$
E. Period is independent of amplitude for oscillating systems


参考答案:  A


本题详细解析:
A straight line on a w9zen9 in aecmh: 04*5xwd.xf$\log(T)$ vs $\log(A)$ plot indicates a power-law relationship: $T = kA^m$. Taking the log of both sides gives $\log(T) = m \log(A) + \log(k)$. This is a linear equation $y = mx + b$, where $y = \log(T)$, $x = \log(A)$, $m$ is the slope, and $b = \log(k)$ is the y-intercept. From the graph: 1. **Find y-intercept ($b$)**: When $x = \log(A) = 0$, the line crosses the y-axis at $y = \log(T) = 3$. So $b = 3$. This means $\log(k) = 3 \implies k = 10^3 = 1000$. 2. **Find slope ($m$)**: Pick another point on the line, for example, $(x, y) = (1.0, 5.0)$. $m = \frac{\Delta y}{\Delta x} = \frac{5.0 - 3.0}{1.0 - 0} = \frac{2.0}{1.0} = 2$. 3. **Combine**: $T = kA^m \implies T = 1000A^2$.

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2026-1-26 09:20 , Processed in 0.058535 second(s), 39 queries , Redis On.

搜索
快速回复 返回顶部 返回列表