无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2012美国US F=MA物理竞赛 (id: 611d13cd8)

[复制链接]
admin 发表于 2025-12-20 23:13:50 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2012美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
A car of mass $m$ has an engine that provides a constant power output $P$. Assuming no friction, what is the maximum constant speed $v_{max}$ that this car can drive up a long incline that makes an angle $\theta$ with the horizontal?

A. $v_{max} = P / (mg \sin \theta)$
B. $v_{max} = P^{2} \sin \theta / mg$
C. $v_{max} = \sqrt{2P / mg} / \sin \theta$
D. There is no maximum constant speed.
E. The maximum constant speed depends on the length of the incline.


参考答案:  A


本题详细解析:
To move at a constant 6 o //kozu;z 0o*4m+ lr hsuubuurdt17speed $v_{max}$, the net force must be zero. The engine's forward force $F_{engine}$ must balance the component of gravity pulling the car down the incline, $F_{gravity} = mg \sin \theta$. So, $F_{engine} = mg \sin \theta$. Power is defined as $P = F \cdot v$. At maximum constant speed, $P = F_{engine} \cdot v_{max}$. $P = (mg \sin \theta) v_{max}$. Solving for $v_{max}$ gives $v_{max} = \frac{P}{mg \sin \theta}$.

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2026-1-26 09:19 , Processed in 0.068110 second(s), 39 queries , Redis On.

搜索
快速回复 返回顶部 返回列表