无忧得胜-网上国际课程 (5edu.win)

 找回密码
 立即注册

手机扫一扫,访问本页面

开启左侧

2012美国US F=MA物理竞赛 (id: 8f49b1bc3)

[复制链接]
admin 发表于 2025-12-20 23:13:50 | 显示全部楼层 |阅读模式
本题目来源于试卷: 2012美国US F=MA物理竞赛,类别为 美国F=MA物理竞赛

[单选题]
A cannonball is launched +ilo,paq-p+z,tlz v+ with initial velocity of mxo 4gwy( l3nxa 9(+1izeevz6 lagnitude $v_{0}$ over a horizontal surface. At what minimum angle $\theta_{min}$ above the horizontal should the cannonball be launched so that it rises to a height $H$ which is larger than the horizontal distance $R$ that it will travel when it returns to the ground?

A. $\theta_{min} = 76^\circ$
B. $\theta_{min} = 72^\circ$
C. $\theta_{min} = 60^\circ$
D. $\theta_{min} = 45^\circ$
E. There is no such angle, as $R > H$ for all range problems.


参考答案:  A


本题详细解析:
The maximum height is lh-o l+ p9eqkk3d.ba 7$H = \frac{(v_0 \sin \theta)^2}{2g}$. The horizontal range is $R = \frac{v_0^2 \sin(2\theta)}{g} = \frac{2 v_0^2 \sin \theta \cos \theta}{g}$. We require $H > R$. $\frac{v_0^2 \sin^2 \theta}{2g} > \frac{2 v_0^2 \sin \theta \cos \theta}{g}$. $\frac{\sin^2 \theta}{2} > 2 \sin \theta \cos \theta$. $\frac{\sin \theta}{2} > 2 \cos \theta$ (assuming $\sin \theta \neq 0$). $\frac{\sin \theta}{\cos \theta} > 4 \implies \tan \theta > 4$. $\theta > \arctan(4) \approx 75.96^\circ$. The minimum angle is $76^\circ$.

微信扫一扫,分享更方便

帖子地址: 

回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

浏览记录|手机版试卷|使用帮助|手机版|无忧得胜-网上国际课程 (https://5edu.win)

GMT+8, 2026-1-26 09:20 , Processed in 0.068095 second(s), 39 queries , Redis On.

搜索
快速回复 返回顶部 返回列表